Аурига разработала решение для обработки больших данных в сфере здравоохранения

Modern technologyB информационную эру миром правят Большие Данные. Объемы данных растут с невероятной скоростью, и к 2020 году, согласно IDC, около 1,7 мегабайт новой информации будет создаваться каждую секунду для каждого человека на Земле. Однако, Большие Данные – это не просто большой объем информации. Это технология. Это инновационный инструмент для анализа огромных массивов данных в реальном времени, планирования, прогнозирования ситуации и, в результате, мгновенного принятия качественных решений. Большие Данные могут стать новым конкурентным преимуществом для любой компании в любой отрасли.

Большие Данные в здравоохранении

В последнее время Большие Данные нашли применение в самых разных отраслях – в промышленности и на транспорте, в энергетике и торговле, в финансовом и страховом секторах, в сфере медиа и науки. Однако одним из самых перспективных направлений считается здравоохранение.

Огромные объемы данных пациентов, накопленные и проанализированные медиками, помогают предсказать эпидемии с точностью 70-90%, повысить точность постановки диагноза и даже избежать серьезных заболеваний. Кроме того, они позволяют существенно снизить стоимость лечения и обеспечить более эффективный, индивидуальный подход к каждому пациенту.

Большие Данные действительно меняют здравоохранение. В 2011 году исследователи McKinsey & Co. подсчитали, что за счет грамотного использования технологий Больших Данных система здравоохранения США могла бы экономить более 300 тыс. долл. ежегодно, что эквивалентно сокращению расходов на 1 тыс. долл. в год для каждого мужчины, женщины и ребенка. Согласно инфографике Evariant, анализ данных в реальном времени позволил госпиталю снизить затраты на сверхурочную работу на 850 тыс. долл. благодаря более эффективному подходу к планированию, управлению, контролю качества и отчетности.

Большие Данные открывают поистине широкие возможности, и Аурига уже начала работу над собственными проектами с применением Больших Данных в сфере здравоохранения.

Высоконагруженная система кардиомониторинга

Технологии:

  • Grid Computing
  • Apache Ignite
  • Apache Hadoop 2.0
  • Apache Kafka
  • Apache Hive
  • QlikView

Почти половина неотложных состояний пациентов связана с расстройствами сердечной деятельности. Однако тяжелых последствий можно избежать, если пациент будет находиться под непрерывным наблюдением. Постоянно анализируя содержимое электрокардиограммы, можно с легкостью распознать приближающийся приступ на ранней стадии.

Команда Ауриги разработала высоконагруженную систему кардиомониторинга, способную предупреждать пользователя о приближении опасных кардиологических состояний. Распознавание таких состояний реализуется трехслойной нейронной сетью. Классическая нейронная сеть была обучена методом обратного распространения ошибки на данных, предоставленных открытым ресурсом PhysioBank, и показала хорошие результаты чувствительности и специфичности.

Система представляет собой горизонтально масштабируемый сервис с низкими требованиями к конфигурации вычислительных узлов в гетерогенных сетях. Мы использовали Apache Ignite, решение с открытым исходным кодом, в качестве платформы для реализации сервиса, а также распределенную очередь Apache Kafka в качестве буфера для надежной и высокоинтенсивной передачи пакетов данных. Для потоковой записи в персистентное хранилище  применялась Hadoop File System.

Совместимость создаваемой системы с различными ЭКГ аппаратами осуществляется в соответствии со стандартом HL7 v3. Парадигма Grid Computing обеспечивает масштабируемость  решения и позволяет создать географически распределённую инфраструктуру, объединяющую множество ресурсов различных типов: процессоры, долговременную и оперативную память, хранилища и базы данных, сети.

Подробный статистический анализ огромного количества данных, поступающих с датчиков переносных холтеровских ЭКГ аппаратов, в сочетании с данными о погоде (например, об атмосферном давлении) позволяет не только постоянно наблюдать за состоянием сотен тысяч пациентов, но и предотвращать нарушения сердечной деятельности. Это делает работу системы сравнимой с диагностикой в режиме реального времени.