
www.auriga.com	 Worldwide & Europe: +7 (495) 713-9900
info@auriga.com	 USA: +1 (866) 645-1119

Testing of Embedded Software Products
Abstract
The paper is devoted to organizing testing process for the embed-

ded software products, and suggesting useful techniques in this

area. Some details discussed in the presentation are specific to

offshore development and testing teams

Keywords: Testing, embedded software.

Introduction
This paper is devoted to the questions of organizing the
testing process for the embedded software products.
Embedded software domain has its own specifics that
influence all components of the development process.
Testing is not an exception. To understand what practices
and techniques work best for this domain, we should first
understand what the main differences of the embedded
software from other software types are. This analysis is
done from the point of view of the offshore team. For in-
house team some details differ, still the overall approach
remains the same.

Embedded software domain specifics
The first eye-catching thing is that the embedded software
is significantly less visible to the end users. User interfac-
es are limited. There may be a console-based text menu,
a simple command line interface, a set of digital inputs
of outputs, or something similar. Rarely do we get more
than that. On the other hand the inter-component inter-
faces can be very rich and complex—including APIs to the
higher-level software, implementations of various com-
munication, data exchange, control, and other standards,
etc. Thus the main focus of embedded software testing is
not on testing the user interfaces, but on testing the com-
ponents not visible to the end users.

The second major difference is the level of the depen-
dence on the hardware specifics. Embedded software is
the level of the software closest to the hardware. Other
software types such as operating systems and applications
may be built upon the interfaces provided by the embed-

ded software such as BIOS or boot loader. The embedded
software itself, even if it uses some more or less standard
framework underneath, needs to care more about hard-
ware details. Embedded software by definition is designed
for a particular hardware unit (or a set of hardware units in
common case). Often, those hardware units are developed
in parallel with the embedded software. The created soft-
ware is the first to run on it. Thus, unlike application de-
velopment, in the embedded world we can’t rely on the fact
that the operating system is already tested on that hard-
ware platform, or that the ability of the hardware itself to
execute various software is already thoroughly tested.

As a result, the developed software may have solutions
and workarounds specific for particular hardware revi-
sions. Operation of the embedded software may depend
on such things that we usually don’t care about for the
application-level software, like the length of the cable, type
of the mouse, serial port frequency, or type of the devices
connected to the same bus. That makes the successful exe-
cution embedded software to a much higher degree depen-
dent on the particular hardware unit and on the behavior
of the other units in the same bus or network. Compared
to the conventional case, race conditions are mostly caused
not by the interaction of the internal software components,
but rather by the interactions of the software with the en-
vironment. So, the number of factors and parameters that
can influence the operation is bigger than for the average
application. And reproduction of a defect is more difficult.

Support operations, such as software deployment, up-
grade, getting debug information, also differ from what we
are used to see for conventional application-level software,
with its plug-n-play concept, installation wizards, ability
to attach a convenient debugger from one of the IDEs, or
at list dump all debug output lines to a large file on disk. In
the embedded world we often need to put the software in
the special mode, disable EEPROM write-protection, at-
tach to some file-distribution (like TFTP) server, reboot a
couple of times, and care about other similar things. That

www.auriga.com	 Worldwide & Europe: +7 (495) 713-9900
info@auriga.com	 USA: +1 (866) 645-1119

makes the software update process lengthy and inconve-
nient. Besides, it might happen that the device that stores
your software supports only a limited number of re-write
cycles.

Thus even during the active development phases the
software versions tend to be updated less frequently than
for the other forms of software. The new revision would
typically be deployed only after a significant number of de-
fects are resolved. Thus, the testing process should attempt
to find as many defects as possible, and not stop after the
first one, even if it makes the product crash.

Talking about the difficulties with debugging and gather-
ing additional information for defects, embedded software
development process differs in those aspects as well. No
or limited non-volatile storage, inability to run debugger
on the same system, often reduced version of underlying
operating system or no OS at all what leads to the absence
of remote debugging methods, that makes the debugging
task much harder than for the conventional application-
level software.

As the last but not least characteristic of the embedded
software domain, I should mention a high level of robust-
ness typically required from that software. Serving as a
base for higher level application software, and working in
the environment that doesn’t allow for high maintainabil-
ity, embedded software is very sensitive for the robustness
level.

Embedded software testing challenges
The specifics of the embedded software domain imply
certain requirements for the organization of the testing
process. Let’s quickly reiterate through the specifics and
understand what challenges they mean for the testing
process.

Focus on non-human interfaces leads to the fact that
regardless of our attitude to that, we can’t use manual in-
terface testing approach. To test the developed embedded
software we need first to develop more software. Special
applications, test agents, need to be created to provide
stimulus and capture response through the non-human
interfaces. It is also often required to emulate particular
electrical signal patterns on various data lines to test the

behavior of the embedded software for such inputs. It can
be done using special hardware/software complex and
that also implies having a special test agent to control that
complex.

High level of hardware dependency and the fact that the
embedded software is often developed in parallel with the
hardware lead to several important consequences. First,
there may be only few samples of the newly developed
hardware. Second, the range of the hardware unit types to
test our software on can be quite wide. Thus, typically the
testing team has to share a very limited set of hardware
units among its members and/or organize remote access to
the hardware. In the second case, that means that the test-
ing team has no physical access to the hardware at all.

Another aspect in having the software developed for a
freshly created hardware is a high ratio of hardware de-
fects that can be discovered during the testing process.
Any discovered defect may be related to the hardware, not
only software. Always keeping that in mind is especially
important for embedded software projects. What’s worse
the software may work just fine with one revision of the
hardware, and doesn’t work with another. That’s definitely
a challenge for the testing process.

We have already mentioned that defects are harder to
reproduce in the embedded case. That forces the embed-
ded testing process to value each defect occurrence much
higher than in a conventional case and attempt to gather
as much information as possible to simplify looking for
the root of the defect. Combined with the very limited de-
bug capabilities of the embedded products, that gives us
another challenge.

Limitations related to the software updates make the
testing process very persistent in discovering as many
bugs as possible for a given software revision. It also in-
creases importance of build and deployment procedure
organization.

High level of requirements on the robustness/availabil-
ity front leads to the need in very thorough stress testing.
Another consequence of that fact is the need to emulate
the sequences of rapidly following events to check for race
conditions under those circumstances.

www.auriga.com	 Worldwide & Europe: +7 (495) 713-9900
info@auriga.com	 USA: +1 (866) 645-1119

Embedded software testing approach
As it is clear from the previous paragraphs, testing process
in the embedded software case faces a number of specific
challenges. This section suggests an approach that satisfies
all the needs listed above and that has proven its viability
based on the results of implementing it in the real-life em-
bedded software projects performed by Auriga.

Automated vs. manual testing
First of all, it is obvious that using manual testing as the
main method for such projects is very difficult, if not im-
possible. Routine, time-consuming, repetitive stress test-
ing, work with non-human interfaces, need to discover
race conditions for the fast sequences of events, and some
other factors—all stand against that. Thus automated test-
ing is the first cornerstone of the approach.

Of course, manual testing as always has its percentage of
tests that is more cost-effective to run manually than auto-
mate. But this percentage is smaller than usually forced by
higher relative efficiency of automation in remote access
environment (the alternative to which is organizing a trip
to the remote lab) and special supporting means described
later in this chapter. In any case, automation is done for
more than 95% of the test cases, and we’ll mostly concen-
trate on it in this section.

Having said that, it must be mentioned that automation
and usage of test agents doesn’t simply change the way of
executing the test cases and presenting results, it affects all
aspects of the testing process.

Test design and tracing requirements
Two things must be understood. First, a great number of
the test cases created for the embedded software simply
cannot be executed manually. Thus a straightforward test
design approach—get requirements design test cases
run manually, optimize, fix, detail create script based on
the manual case—doesn’t work here. Second, unlike regu-
lar methodology, the software requirements specification
does not lead to and is not traced to just the set of the test
cases. Instead, based on the software requirements of the
embedded software, two artifacts are created—the set of
the test cases and the requirements for the test support in-

frastructure consisting of the automation framework and
test agents. In the formal sense, the embedded software
requirements are traced to the test cases, which in turn
are traced to the software requirements for the agents and
framework. But from the practical perspective, test cases
and support software requirements cannot be separated.

Validation of the test support infrastructure
The second influence on the testing process is in the
fact that the support software must itself be validated.
Basically, that means that, first, the test agents and the au-
tomation framework must be tested themselves—test de-
sign, execution, coverage analysis, and all other activities
are performed for them as well. Test agents are typically
relatively simple software entities with a limited set of re-
quirements, so testing them is significantly simpler than
testing the original software product. Still, they often need
to implement complex data exchange protocols (includ-
ing encryption, authentication, compression, connection
establishment, and what not), so testing them is not at all
simple.

Complete testing of the test agents is often impossible
without having more-or-less working version of the target
process. So, passing the tests for a test agent also means
passing basic functionality tests in a particular area for the
target software. During this testing, previously verified
test agents and hardware debugging tools—bus analyzers,
network sniffers, JTAG probes, and oscilloscopes—are ex-
tensively used. The hardware debugging tools are especial-
ly useful at this stage of achieving a basically functional
application. That has another natural implication on the
embedded software development process. The design of
the test support tools is done parallel with the target em-
bedded software design, and the development plans for the
target software and test agents are highly dependent.

The second component of the test support infrastruc-
ture, automation framework, also obviously requires vali-
dation. However, unlike the test agents, which perform
functions specific to a particular embedded product, it
can and should be designed and implemented as project-
independent, at least inside some wide technological or or-
ganizational segment. That saves a great amount of testing

www.auriga.com	 Worldwide & Europe: +7 (495) 713-9900
info@auriga.com	 USA: +1 (866) 645-1119

effort that can be done only once and doesn’t need to be
repeated for every next project.

Defect tracking and analysis
Besides the direct verification and validation effort, the
need to validate the test support infrastructure also influ-
ences the defect lifecycle and defect tracking repository
setup. For embedded software, several possible origins
should be considered for each defect: the target software,
the underlying hardware, the test support infrastructure.
As one of the examples of the practical consequences of
that, it leads to specifying target software, hardware, and
test support suite IDs in every discovered defect record.
Another example is including the representative of the
test support infrastructure development team in the triage
committee for the project.

For hardware-caused defects, the testing team must in-
clude a person with hardware engineer skills and skills in
using various hardware debugging tools mentioned above.
This person is also included in the triage committee, ex-
amines each defect from the point of view of probability
for it to be of the hardware origin, provides guidance to
the team regarding the suspicious signs in hardware be-
havior and gathers additional data for analysis if hardware
defect is suspected.

Hardware coverage matrix
A higher probability of the hardware defect doesn’t lead
just to the need to specify hardware ID in the defect record
and having a hardware engineer in the team. The target
software must also be tested on the range of the possible
target hardware types and revisions. That doesn’t mean
that each test case must be run on all possible hardware
units/types/revisions. A conscious choice between the
coverage and cost/time must be made. It is often possi-
ble to combine hardware units in groups for testing each
functionality area, or at least perform random selection
for regression testing purposes. The test strategies defined
for different projects may vary in this aspect based on the
project constraints and requirements.

In any case, the hardware coverage matrix is created. All
“test case—hardware unit” combinations that should be

verified are marked in this matrix. For obvious reasons,
automation framework should allow for specifying and
changing the matrix without affecting the bodies of the
individual test cases.

Software builds
Establishing the right build and deployment process is also
essential for the success of the embedded software test-
ing task. As it was mentioned, it is important to correctly
identify the target software revision, for which a defect is
revealed. Several techniques are used to address the issues
related to the software build identification.

One of the useful practices is obtaining the build num-
ber from the running target software at the beginning of
the test suite execution—the embedded software that has
some user interface often allows getting that information.
Using this practice prevents incorrect identification of the
version in defect records, if a test suite was run against the
wrong version by mistake.

Another practice is used for the smoke tests of regular
software releases. According to the practice, the test sup-
port infrastructure contains all necessary tools for making
the build, assigning it a unique number, tagging the source
tree, archiving the binaries, transferring the binaries to
the deployment server (e.g. TFTP server) and from it to
the target board, and updating the software on the board.
Such operations may be performed at the beginning of the
overnight smoke test for a regular build. For the projects
with no limitations on the number of software updates for
the target hardware unit, this operation can be performed
completely (build and deploy on the board) or partly (de-
ploy only) before every build to ensure the right version to
be used during the testing.

Debug support
One of the goals of the good testing process, besides re-
vealing as many defects as possible, should be assistance
to the developers in resolving the defects. The value of a
defect that was seen by the testing team, but then could not
be reproduced by the development team, and thus could
not be fixed due to insufficient information, is low. As we
discussed, in the embedded world the defects are harder to

www.auriga.com	 Worldwide & Europe: +7 (495) 713-9900
info@auriga.com	 USA: +1 (866) 645-1119

reproduce, thus as much information is possible should be
gathered on the first occurrence. Due to the fact that de-
bugging is also more difficult for the embedded software,
the development team often uses special debug builds or
special debug modes of the target software with increased
logging capabilities. There are two implications of this sit-
uation for the testing process.

First, the timing and other characteristics of the debug
and release versions of the target software may differ, and
the defect seen on one version may never be seen for the
other version. Thus it is important to keep track of the
software revision, for which the defect was discovered by
testing. This topic is discussed separately in this paper.

Second, the test cases should be designed to allow using
these extended capabilities of the debug version or mode.
When a defect is revealed the test case should store the de-
bug output of the software in the test log tied to the test
result, so that a developer assigned to resolving the defect
can use this data during the analysis. The test case should
also be able to detect the type of version of the target soft-
ware—debug or release, or switch between the modes. The
details of that are highly project-specific and are usually
implemented either through the parameters passed to the
test case, or by employing a specialized test agent.

Test runs
Due to the contradicting characteristics of the embedded
software product, there are two types of test runs em-
ployed for it.

As it was said, it is often beneficial to reveal as many de-
fects as possible for the deployed version before updating
the software revision. An ideal tool for that is batch run
of test cases. All selected test cases are run according to
the hardware coverage matrix, and the results are stored
in the test log. If an error is detected, the test run doesn’t
stop, but rather captures all possible information about the
system state at the time when the defect was discovered
(and all debug support techniques are important here) and
continues with the next test case. Needless to say, the test
support framework should perform a complete clean up
after each test case to avoid influence between the test cas-
es in general and a series of failed cases after the first crash

in particular. Such clean ups often include system reboot,
typically software reboot after a successfully completed
test case, and hardware reboot after a failure.

Such test runs are lengthy, the required time further in-
creased by the need to clean up, and are typically sched-
uled to be performed in automatic mode overnight. Such
batch runs are especially useful as smoke/regression tests
for new builds.

In certain cases, the second type of the test run is used.
The tests are run until the first failure, and if a failure oc-
curs, the test run is stopped, the system state is preserved,
and a developer is notified and allowed to examine the
system state in details to reveal the root cause of the fail-
ure. It is also possible to create an automation framework
that would break the test run only of the failure occur in
a particular test case (or a set of test cases). Such test runs
are useful for hunting down the defects, for which infor-
mation gathered in the batch mode is insufficient, and a
developer needs to get access to the system at the moment
of defect to investigate it.

Virtual laboratory
The methodological approaches described in the previous
sections allow forming the testing process relevant to the
specifics of the embedded software testing. However, there
is another important part of the approach—a software and
hardware solution, called Virtual Laboratory, or VL. This
solution provides the means for solving several technically
complex problems faced during the testing.

Target Chassis

VL Server/
Test Master External

Ethernet

Local
VL Client

Remote
VL Client

Secure ShellLocal
Ethernet

Power Bar

Digital IO,
Serial Ports,

Ethernet

www.auriga.com	 Worldwide & Europe: +7 (495) 713-9900
info@auriga.com	 USA: +1 (866) 645-1119

First, it contains a database of the existing hardware
units. The units are identified by simple string IDs. For
each unit, it is possible to specify several properties, such
as hardware revision, communication IDs—IP address,
MAC address, login credentials, etc. For a test script that
means that by a unique unit ID passed as a parameter,
it can restore all other parameters required for commu-
nicating with this board and providing complete defect
reports.

Second, VL supports serial consoles, power bars (devic-
es allowing switching the power on and off for the target
units), and dry contact controllers (relays). Console/relay/
power bar lines are associated with a particular unit in the
hardware units database. And as a result, all operations
with a particular unit are performed by the test scripts
based on the name of that unit.

Third, VL provides means for ensuring exclusive access
to the shared hardware. Before accessing a unit’s console,
toggling the power or some other relay for the unit, the test
script must first ‘lock’ that unit using a special command.
While the unit is locked, no other entity can ‘lock’ it. After
all testing actions are performed, the test scripts ‘unlocks’

the unit, allowing others to control it. Such exclusive lock-
ing mechanism prevents interference of different test
scripts and human operators attempting to run test on the
same board simultaneously.

VL provides human-friendly command-line interface
over secured connection, and can be used both by test
scripts and human test operators.

VL serves the base for executing all automated and man-
ual tests for the target software.

Automation framework
The description of the test support infrastructure would
be incomplete without a brief description of the automa-
tion framework. As it was already said, besides the test
agents the test support infrastructure contains also the au-
tomation framework. This framework contains a library of
methods called by the test scripts. All typical, project-in-
dependent operations performed by the test scripts should
be moved there. Re-using this framework for subsequent
projects allows saving a lot of effort on automation and
validation of typical operations.

The majority of those typical operations were already

Developer
Host

Deployment Server
Build

Server

Version
Control
Server

Execution Facility

Execution
Box # 1

Execution
Box # Y

Execution
Server

Logging
Server

Tester
Workstation

Z

Tester
Workstation

2

Tester
Workstation

1

VL Server

Test
HW # 1

Test
HW # X

www.auriga.com	 Worldwide & Europe: +7 (495) 713-9900
info@auriga.com	 USA: +1 (866) 645-1119

discussed in one or another form in the previous sec-
tions. Here we provide a compilation of the highlights. The
framework includes methods for performing the following
key tasks:

Defining the set of test cases and hardware targets for a •	
particular test run
Obtaining unit parameters based on unit ID•	
Accessing serial console of the specific unit, performing •	
login with correct credentials if applicable
Controlling the power and relay channels for a particu-•	
lar target
Invoking test agents with certain parameters to send •	
raw or predefined messages through different protocol
channels
Obtaining parameters from the target unit—software •	
revision, debug state, etc
Obtaining debug logs from the board •	
Clean reset of the target•	
Recording the results of the test case execution•	
Generating test results report•	
Controlling the test run execution—breaking the test •	
run on test failure or continuing with further test cases
depending on the settings
Building tagging, archiving software•	
Deploying software on the target board•	

Test environment
The diagram on this page represents the overall architec-
ture of the test environment. It consists of the boxes repre-
senting logical functions of various test environment units
and interfaces between them. It must be noted that logical
functions are not always directly mapped to the physical
components. E.g. a single physical server can play the role
of build server and version control server simultaneously.

According to this diagram (we start from the bottom),
testers connect from their personal workstations to the ex-
ecution server.

Execution server is a dispatcher. Its main goal is to dis-
tribute testing jobs between the execution boxes. Very of-
ten it serves as the authorization gate to the whole testing
facility.

Logging server is the centralized data storage center, all
test logs are dumped there for analysis.

Execution boxes are the systems which execute automat-
ic tests. The main reasons for separating execution boxes
from tester workstations are the following:

Execution box on which the tests are run may have per-•	
formance requirements different from the tester’s work-
station configuration. Also, once run on the execution
box the test scripts are not affected by the further activi-
ties on the tester’s workstation. Thus, recording a DVD
with the new build on the tester’s workstation, or shut-
ting down the workstation for the night, won’t affect the
test script in any way.
In case of the remote access to the hardware, execution •	
boxes reside in that remote lab along with VL server and
target hardware units, and thus its communication with
them is not a subject to Internet-caused delays, which
otherwise could affect the test results.
Build server and version control server are used for

making the product builds and storing the version control
repository respectively.

The role of the deployment server was already discussed.
It allows uploading the new version of the software to the
target hardware units, using a product-specific interface
(e.g. TFTP).

VL server is used as a gate. It contains the hardware units
database, and is the only entity that can directly access the
hardware units. Other entities use its exclusive locking
mechanism to ensure proper usage of shared resources.

Development host depicted on the diagram is used as
an example of access provided to other members of the
development team, involved in ad hoc testing and debug-
ging activities. It communicates with build, version con-
trol, and deployment servers to put a new software version
on the target board, and with the VL server to control the
board operation.

Summary
The test approach presented in this section has the follow-
ing main components:

www.auriga.com	 Worldwide & Europe: +7 (495) 713-9900
info@auriga.com	 USA: +1 (866) 645-1119

95+% automated testing•	
Virtual laboratory solution•	
Re-usable automation framework simplifying typical •	
operations
Practices and techniques•	

Traceability of the target software requirements to the --
test cases and test support software requirements
Validation of the test support infrastructure--
Tight integration of the target software and test sup---
port software development plans
Usage of hardware debug tools, especially during early --
stages
Analysis of 3 origins for every defect: target software, --
hardware, test support infrastructure

Specifying 3 IDs for every defect: target software, --
hardware, test support infrastructure
Hardware engineer in the team--
Defining hardware coverage matrix--
Double-checking target software version by reading it --
from the unit
Automatic software build and/or deployment as a part --
of test execution (optional)
Support for extensive debug builds/modes in automa---
tion framework
Two types of test runs: non-stop batch, defect hunting--

